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Flow of Liquid He Il under Large Temperature and
Pressure Gradients

P. P. Craig,7 W. E. KeLLEr, axp E. F. HamMmEL, JR.

Los Alamos Scientific Laboratory, University of California, Los Alamos,
New Mezrico

Two previous papers from this laboratory have reported measurements of
heat conduction and fountain pressure for liquid He II flowing through narrow
slits (0.3p < d < 3.3u) for temperature differences as large as 1°K. For the
lower, yet appreciable, temperature differences the linear two-fluid equations
of London and Zilsel were quantitatively verified; integration over the tem-
perature interval was required. The present paper extends the analysis of the
measurements tostill larger AT's, for which the linear equations are no longer
applicable. For this purpose integrated solutions of the Gorter-Mellink non-
linear thermohydrodynamic equations, based on the concept of mutual frie-
tion, are derived with special emphasis placed on the assumptions and restrie-
tions necessitated by the model. The integrals for heat flow and fountain
pressure have been solved numerieally using a high-speed computer and the
results are compared with the experiments. When Vinen's values of the mutual
friction parameter .1 (7") are employved in the solutions, the comparison is quite
good, except near the A-point; it is also shown that other values of A(7') are
not compatible with the observations. An explanation in terms of the vortex
line model is proposed for the deviations near 7', . Despite the agreement
between the vortex line theory and experiment obtained here, several as yet
unresolved difficulties are associated with flow phenomena in small slits; cer-
tain aspects of these problems are discussed, most notably the eriteria for the
onset of the nonlinear dissipation effects.

[. INTRODUCTION

Experimental studies, designed to test the linear equations of motion for
liquid He II under conditions of large temperature and pressure differences in
narrow channels of carefully chosen geometry, have been reported in two pre-
vious papers (1, 2) (henceforth denoted as I and II). In interpreting these meas-
urements it was necessary to integrate the linear equations of motion over the
temperature differences encompassed by the experiments. This approach proved
adequate to explain observations on both fountain pressure and heat flow over o
far wider range of temperature differences than could be accounted for by the

* Work performed under the auspices of the United States Atomic Energy Commission.
T Now at Brookhaven National Laboratory, Upton, L. I., New York.
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FLOW OF LIQUID HE II 73

linearized nonintegrated theory. However, at sufficiently high heat flows satura-
tion effects appeared producing significant deviations from the predictions of
the linear theory.

In this paper we shall discuss the relationship of measurements involving very
large heat current densities to solutions of the Gorter-Mellink (3) nonlinear
thermohydrodynamical equations. The integrated nonlinear equations are found
to reduce to the linear equations for small heat flows. For larger heat currents
the calculations using Vinen’s (4) values of A (7) in the mutual friction term
are in good quantitative agreement with the observations, except in the neighbor-
hood of the A-point. However, since the Vinen model of dissipation in He II
resulting from vortex line turbulence in the superfluid as applied to the present
experimental arrangement predicts the breakdown of the equations near the
A\-point, the observed deviations may be considered as qualitative support for
the theory.

II. DERIVATION OF INTEGRATED FLOW EQUATIONS
A. DerivaTiox oF VP Axp VT

In order to obtain solutions to the thermohydrodynamic equations of motion
for He II which are applicable to long narrow slits and capillaries, we begin
with the following two-fluid equations of motion, including mutual friction':

Px% = —<&> vP + Ps sVT — an (1)
Dt p .
D n n i g
P th = ——(%)VP — 2V + Fan — VX VX Vat Cna+9)V(Vova) (2)
where
Dv  ov ]
or = 5 + (v-V)v.

Here the subseripts s and n refer to the superfluid and the normal fluid, 5, is
the normal fluid viscosity, and %’ is the bulk or second viscosity. The frictional
force F., accounts for interaction between the superfluid and the normal fluid.
The form of this term will be discussed later. Possible other forces acting sepa-
rately on the normal fluid and on the superfluid are neglected in this treatment.

T The equations of motion have been written in various forms. and the correet form for
Inrge velocities and including irreversible processes is still controversial. Equations (1)
and (2) originate from the ideas of Tisza (5), Landau (6), London (7), and Gorter and
Mellink (8), and are believed to serve the present purposes well to a good first approxima-
tion. The more detailed treatment of the second viscosity terms by Khalatnikov (8) is
necessary for analyzing experiments on such phenomena as first and second sound; but in
experiments on fountain pressure and heat conduction the second viscosity plays a sub-
ordinate role and the following more easily handled equations sutlice.

A it

P STORITRRAp I S w

3
1
i
:




. REgh el Bare et i o 2 AR S
‘ = S il ISR R

74 CRAIG, KELLER, AND HAMMEL

In addition to the equations of motion we have conservation of mass
. dp
V'(Ptvx+Pyxvn)+a—t=0y

and in the counterflow experiments to be discussed the total momentum also
vanishes
psVs + pu¥n = 01 (3)

where the bars denote averaging across the slit width.

In steady state flow local accelerations vanish so on the left side of (1) and (2)
only the second order terms remain. Adding (1) and (2) we get

Ps(vs'v)vs + Pn(vn'v)vn = —VP — ﬂnv X (V X Vn)
, )
+ (27ln + 7 )V(V'vn)~

The heat current density q (watts/em®) is carried by the normal fluid such that

q = psTv, = v,8" %)
where 8 = (psT)~". Since heat is assumed to be conserved, V-q = 0 and
Veva = 8V-q + q-V8 = q- V8. 6)

Using the vector identity
VX (VXvV) =V(Vv) — Vv
the terms in (4) inv91ving viscosity may be simplified to give
VP = 2.V°(8q) + (m + 1)V(Q-VB) — p(ve: V)Vi — pn(Va-V)Va. (7)

To solve this equation we now make some assumptions which will later be
shown to be valid for long narrow slits. Take the z axis along the length of the
slit, and the . axis across the slit. Unit vectors in these directions are e, and e, .
We assume that

q=q()e. and T = T(z) ! (8)

thereby implyving that 3 = 8(z) and 5. = 7.(z). We further assume that the

second order terms on the right of (7) are small compared to the other terms.

Using these assumptions (7) may be separated into . and z components to give
ar o

_ d"q o ’ ap
7 = MmB s+ (2n+ g o5 (9)

2 Most of the following equations in which the heat current density appears are not

vector equations. Nevertheless, for convenience we continue to use the boldface notation
q for this quantity.
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and
aF | . dq ds
e (nn+n) ol (10)

Equation (9) may be solved if we assume that the second term on the right is
small, i.e.

L d'B n 1 d'q
1 n 1
b @ Somtrt & (13

(Justification for this assumption will be given later.) Subject to the condition
= 0 at the slit boundaries &=d/2, the solution for q is

3 - 42° .
Q=51 (1 TP—> . (12)
Then the pressure gradient becomes
P 1‘)')7,1 129, @ .
3z peld (13)

This last equation is the basis of the so-called Allen-Reekie rule, which specifies
that in the limit of small A7"s the fountain pressure P; and the heat current
density are proportional and that this relationship is independent of the form
of F.,. Since the right hand side of (13) is strongly temperature dependent,
for larger temperature differences this equation must be integrated to give

B s - 129, dz
AP, = Pg = f“ W—d—TdT. (14)
In order to obtain the relationship between P and q for large temperature dif-
ferences it is therefore necessary to obtain an expression for d7T dz as a funetion
of the temperature along the length of the slit. Since the temperature gradient
along the slit does depend upon Fy, , as will be seen below, it is obvious that the
relationship between P; and @ must for large temperature differences also de-
pend upon Fi, .

We now wish to find an expression for the temperature gradient. To do so we
must postulate a particular form for the frictional force F., . We shall concen-
trate our attention upon the Gorter-Mellink type of force, which we shall write
in the slightly generalized form

Fa(Va— Va) = dppu((Ve = Va | = V)" (Ve — W) [Vu—Wu|> W

(15)

=0 IV.—VnI<V¢.
Here A is the (temperature dependent) Gorter-Mellink coefficient, v, is a
(possibly temperature dependent) critical velocity, and m has in various ex-
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periments been found to lie in the range 3—. The frictional term acts only
when the relative velocity |v. — va| exceeds ve.

The boundary condition applied to the normal fluid in obtaining (12) re-
quired that the tangential component of the normal fluid velocity vanish at the
slit walls. Since the superfluid component is considered to possess no viscosity no
similar boundary condition applies and one must resort to other arguments to
determine the superfluid velocity profile. A sufficient condition for this profile
to be determined is that there exist an arbitrarily small force, a function of
| v. — va |, acting between the superfluid and the normal fluid. The form of the
force is immaterial. Then from (1), assuming a nonvanishing force and neglect-
ing as before the terms on the left, we have

'an(vs e vn) e p.xSVT - (P,- 'P) VP. (16)
Equation (16) may then be solved for v. — vy in the form
v. — Wu = f(T, P). (17)

We now average across the slit, making use of the earlier assumptions (justified
in Section II, B) that 7" and P undergo negligible variation across the slit.
1 d/2 1 dre
v, — V, = —[ (vy — V) dov = T, Pide = KT, P). (18)
d J-ap d Ja»
Therefore we conclude that
Ve — V, = V. — Vp. (19)

The normal fluid velocity profile is given (from (12) using q = B87'va) by

v = 2, (1 - ﬁ) (20)

2 d*

and hence from (3) the superfluid velocity profile is

_ |3 g
Ve = ¥V, [§ (1 — -(*{;:> - i] (21)

and the superfluid velocity at the slit walls is

(V) want = — (p p) V. : (22)
The superfluid flow is rotational, the curl of the velocity being given by
VXV, = (12¢/d) e, . ©23)

The eirculation veetor is along the y axis and the circulation is a maximum at

the shit walls.
At low veloeities it is not clear whether a frictional force exists between the

4 T T 2 e e P o T T Ty e e
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normal and superfluid. A force of the form (15) vanishes for sufficiently small
velocities, and for these low velocities further discussion of the superfluid veloc-
ity profile is required. Since the superfluid probably flows entirely without dis-
sipation the most likely flow pattern is one without circulation. This would mean
that the velocity is constant across the slit. However, there is no experimental
evidence supporting this idea, and as we have just shown even a vanishingly
small foree is sufficient to produce the profile of (21). The situation is analogous
to that which occurs in the flow of fluids about airfoils. The solution for the case
of vanishingly small viscosity is qualitatively different from that obtained when
the viscosity vanishes identically. For identically zero viscosity eirculation can-
not be established and zero lift is obtained. For vanishingly small viscosity the
Kutta boundary condition on the flow applies, and classical lift occurs. It has
been shown that for the flow of pure superfluid He IT about an airfoil the lift
vanishes at low velocities (9), and that therefore in suberitical superfluid Aow
the viscosity is identically zero. It seems probably that a similar situation ob-
tains in the present case and that at sufficiently low relative velocities the frie-
tional force should vanish identically, the superfluid flow being then truly irro-
tational. It is of interest to note that, could the superfluid velocity profile be
measured in a slit at low velocities, one might determine unequivocally, purely
from the qualitative character of the flow, whether this is indeed the case.
The z component of (16) is given by

ps Sl =2 b dp [ = | = W) R =) (20)
Using (19) to replace (v — vi) by v, — v, and converting velocity into heat
eurrent density with (3) and (5) we obtain from (13) and (24) with m = 3

aT

57 =~ + ed'(@ — q0)) (25)

where
@—q) =0 qd <4, qe = psTV:,

_ (po)'T
129,

and

= A ( Pn /p)
12n.(ps/p)*s*T* "

For all but the smallest temperature differences (25) must be integrated to ob-
tain g as a function of AT between the slit ends. When this is done we have

ot b s
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. AdT o _dz
d'f e .= — q-—dT = gL
ry 1+ ad¥(@ — Q) ro dT .
which when rearranged gives
2 T "
d AdT (26)

=7 )i TF ad@ — 0"

Equation (25) provides the relationship for the variation of the temperature
gradient along the slit length and may be substituted into (14) to yield

" dT
Py = f s : 27
=l THal@ - 0 e

Equations (26) and (27) will be used to obtain comparisons with the experi-

mental results of I and IL.

It is to be noted that (26) and (27) may be easily altered in order to arrive
at solutions for heat flow and fountain pressure in circular capillaries. For a
capillary of radius r and length L, d* is merely replaced by 3r*/2.

B. NEGLECTED TERMS
We show first that the approximation of (11) is a good one. We investigate
_ 87(d'8/d2) -
[1a/(na + )13 (P da®)
and show that R, << 1. In the temperature range of interest (115° < T <
2.15°K), s/sx ~ pa/p ~ (T/Th)" where n ~ 5.0. Let T/Ty = ¢ and B\ =
(pS)\T).)_l. Then

R,

dB e —(n+2) d;’
== BT (29)
and
s _ _ - oy p=trtd (AEY —teeny d'E
az (n 4+ 1) [ (n + 2)¢ ((E) + & Iz"g] e
_(n+ DG+ o) (B3n + 3)q + ad'q(Hn + 5 — 2" — 4ng")]
- AT+

since from (25), neglecting q. for simplicity

e 1 = 23 g
o= @t edd) (31)
and - R T
dr _ (2t 1) ((l_g) 4+ af’ (n 4+ 2 — 2 — g\ dt (32)
& ¢ dz) TANLN T (=) Az’ -
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From (12) and (13) we obtain the other required coeflicient:
dq 123
e~ &

The work of IKhalatnikov (8) has indicated that the bulk viscosity may be of
the order of ten times the ordinary viscosity, so in estimating an upper limit on
Ry we consider the viscosity term to be 1. Also, the maximum value of q is
3,3. Substituting (30) and (33) into (28) we obtain an expression for R, in
terms of known or calculable quantities. I'or d = 2y and the maximum g’s
encountered in these experiments, Table I presents the maximum value at-
tained by R, at several temperatures, from which it is seen that in these experi-
ments 2 < 1.

The ratio of the pressure gradients R, across the slit to those along it may be
found from (9) and (10), neglecting the small second term in (9).

_ P/ox _ (n" + n’> (dq/dx)(dB dz) (34)
~9P/oz \ . 8(d*q/dxr?)
Estimates of the maximum values of R, are also given in Table I and indicate
that exeept for the largest heat flows in the vicinity of the A-point the pressure
eradient across the slit is negligible compared to that along the slit. By virtue
of the relation (16) between VP and V7 the same statement may be made for
the temperature gradient, indicating the extent of validity for the assumption
made in (8) that 7 is a function of z alone. :

The second order terms in (1) and (2) may be shown to be small in the same
way. We are concerned with gradients of the energy in the z direction. In (2)
we compare the z component of the left hand side with the z component of VP:

R — pl0(va’/2)/02) _ p(d/dz)(8°T")
ET (on/p)oPloz  inad), (psTd)

(33)

R,

(35)

Since
B‘.’ = szf'-?("ﬂ),
Re ~ (n 4+ 1)p8T(1 + ad’§).
TABLE I

Maxivmoym VALUEs oF THE RaTros Ry, R, , aAND Rg CORRESPONDING TO THE Maximum
HeAT CURRENT DENSITY Qmax AT SEVERAL TEMPERATURES FOR SLIT [ (d = 2 4),

(36)

To= LI°K
A (watt/ a q (watt/

T(°K) cm® — deg) (cm?/watt?) cm?) Ry R, Re
1.2 3 X 108 6.9 X 10° 10! <1074 4 X 1073 1073
1.8 7.3 X 108 5.2 X 10% 10 <1073 4+ X 1073 9 X 1073
2.15 3.5 X 10¢ 3.3 X 107 15 <10°¢ <10t 3 X 10
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Using the experimental values of Gu.x we find values of Ry given in Table I
which indicate that it is reasonable to neglect the second order terms in the cal-
culations of heat flow and fountain pressure.

In obtaining (6) and (25) two assumptions concerning the flow of heat have
been made. The first is that conduction of heat by the ordinary diffusive mecha-
nism is small compared to the conduction by the counterflow mechanism. That
this is so may be easily verified by considering the results of Zinovieva (10)
for the ordinary heat conductivity coeflicient; when these are applied to the
experimental conditions of I and II the amount of heat carried by the normal
diffusive process is found to be several orders of magnitude smaller than that
transported by the convection process, even at the largest A7T"s.

The second assumption we have made is that the kinetic energy associated
with the flow is small compared to the heat flow by internal convection. The
heat introduced by the heater at the hot end of the slit will be conveyed as
kinetic energy of flow as well as by normal fluid convection. The total heat

supplied by the heater then becomes
(-l = PST‘-’n + }’"‘épnl"nzin + ]/épsl'sg‘-,s . (37)

Making use of the vanishing of momentum and defining q;(z) as the heat cur-
rent due to internal convection at any point z in the slit, ie., qi(z) = psTv,,

we have
5 pulpa” — ps°) (@i(2)Y
1=140 [1 + 2p3(psT) (psT ) ] ) ()

The second term in this expression is small for temperatures above 1.1°K and
for the heat currents employed in the experiments under discussion, except in
the region very close to the N-point. At 1.2°K the maximum value of this term
is of the order —107°; at about 1.97°K where p, = p, it is of course zero; and
even at 2.1°K it is no more than 107", Thus kinetic energy terms cannot appre-
ciably alter the heat flow through the slits.

The final point to be discussed in this section is the influence upon the heat
flow of the heat generated by viscous forces through shear. According to the two
fluid model the normal fluid behaves as a truly classical fluid with a elassieal
viscosity. The heat generated per unit volume per second by shear may be ex-
pressed using the Rayleigh dissipation function ¢ in the form used by London

(20)

= 18 Ani | Oni 2 Ao o 5
8 ;<6.&k + 6.1',») + n (\- vn) . (39)

-

Using the approximations and assumptions made previously, the dominant
term is 9, (9rq. dr)”. With (20) and (5) Eq. (39) becomes upon averaging across
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the slit:
129,7," g
P = = : 40
2 TAd? 0]

The total amount of heat generated in the slit per second through the action
of viscous foreces may be found by integrating this expression over the volume of
the slit:

& T(’f ke
o= —foav = [ [ [ Hseayae = o s i

aT
ro T(1 + ad'q)

Using (25) and assuming in the first approximation that the heat generated
does not appreciably perturb the temperature gradient in the slit.

In the lower temperature range we may neglect a d°g’ compared with unity
and Eq. (41) becomes

(41)
= — wdd

Qs = —wdiln Ty/T,. (41a)

Clearly this term is comparable in magnitude with the total heat Q = w dg
and it would at first sight appear that dissipative processes might appreciably
affect the over-all heat transport for a given temperature difference. We shall
now show that this is not the case, and that in fact the Rayvleigh term is respon-
sible for normal fluid generation resulting in the increase in the normal fluid flux
between the hot and the cold ends of the slit.

The average normal fluid flux entering the slit at the hot end of the slit is
N, = (pa¥n)1 gm/ ‘em’-sec and that leaving the cold end is N, = (ann)n gm, ‘em’-
sec. The change in flux is then AN = (p,%a); — (paVu)o gm, em’-sec and we
assert that this difference arises from the generation of normal fluid within the
slit by viscous forces. The effect of normal fluid generation in the slit may be
included in the equation of continuity in the manner suggested by Zilsel (30):

ap" + v- PuVy = r

(42)
where T'(gm cm®sec) represents the generation term for normal fluid (there is
of course an equal sink term for superfluid). In steady state How the time deriva-
tive vanishes, and the total change in normal fluid flux may be found by inte-
grating (42) throughout the slit volume. The heat required to generate T is
Is\T' (the lambda point entropy s\ enters because T' refers to generation of nor-
mal fluid alone rather than fluid of density p, , and the approximation p, p =
valid in the temperature range of interest, is used). Neglecting for the
moment dissipation arising in the Gorter-Mellink term we identify this heat

/s,
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with @ and obtain using (40)

12(Pn/P)Vn277n
) = b Lo b £, 4
sTd? W3}
Upon integrating I' along the length of the slit, the total normal fluid flux change
within the slit is found:
. e g Ad

I'dz = I' —dl = — . T W
T £ To dT To T2\ Ad? q

- _ifr'd_fzi(i_l_)
S\ Jry T+ Sx T] To ’

However, at any temperature 7', § = psT¥,, so that (44) may be written

T - v
1 rd: = (ﬂl) o (88—7;1“) = (Pn vn)l = (Pn ‘-Tn)o = ma (4.))
Ty SA T 1 S T /o

the change in normal fluid flux per unit area over the length of the slit.

The role of T in the two fluid equations of motion has been discussed by Zilsel
(30), and we may readily show using his equations that the perturbation in-
troduced by the dissipation term is exceedingly small. Thus the Rayleigh dis-
sipation term does not contribute to the heat flux (where its effect would be
appreciable) but rather the dissipation present generates normal fluid without
appreciably influencing the overall heat transport or temperature gradient.

The term analogous to the Rayleigh term for the Gorter-Mellink force is

Doy = "1Pspn([ Vs — Vn [ - vc)z(v.-s = vn)z- (46)

(44)

When this term is added to the Rayleigh term the total change in momentum
flux can be calculated in a manner similar to that used in Eq. (44). The only
change introduced occurs in the expression for ¢7'/dz for which Eq. (25) is
used. The final result (45) is unchanged, for the terms involving the Gorter-
Mellink coefficient A drop out. It is likely that there is no dissipation associated
with the Gorter-Mellink term (31).

III. NUMERICAL SOLUTION OF FLOW EQUATIONS

To solve the nonlinear integral equation (26) use i made of the fact that for
given Ty and 7' the average heat current density @ through the slit is a constant.
Therefore with a fixed 7, chosen as well as a particular value for @ Eq. (26)
is integrated numerically out to such a 7 that equality is obtained. The heat
current  is then increased by a small inerement, and a new (larger) value for
T, ecomputed. This procedure is repeated until 7'y reaches T'x. Thus the entire
@, 7' curve is obtained. A new value for 7 is then selected and the entire process
repeated. In this way the family of heat flow curves is generated.
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<li7, the total normal fluid flux change
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Once § is determined as above, the solution may be used directly in the nu-
merical integration of Eq. (27) for the fountain pressure P¢. To obtain P
in mm Hg, (27) is multiplied by the factor 7500 when the following units are
used: p(gm em®), s(joule/gm-deg), A (watt/em*deg), and a(em®/watt®).

We have integrated (26) and (27) on an IBM 704 calculator for the three
slits discussed in I and II. The following input data were used in addition to
the dimensional values of the slits: 7, (7)) was determined from the low power
heat conduetion measurements (see I'ig. 6 of 1) ; values of s were taken from the
tables of van Dijk and Durieux (71); below 1.7°K pa/p was obtained from second
sound (12) data and the thermodynamic calculations of Bendt et al. (13)—
which are in good agreement up to 1.7°K—whereas above 1.7°K p,/p was de-
termined as a smoothed average of these two sets of data plus those of Dash
and Taylor (14). _

Values of the total heat flow Q (rather than q) were computed as well as
the fountain pressure P;. In order to compare the computed values of Q with
the experimentally measured heat flow it is necessary to include the heat flow
through the stainless steel of which the slit is constructed. At low heat flows
where the nonlinear Gorter-Mellink term is unimportant, flow of heat across
the boundary between the helium and the stainless steel does not affect the total
heat conductivity since the flow equations are linear and additivity of the two
solutions is rigorously correct (as discussed in I). At higher heat currents where
the nonlinear terms in the heat conduction equation are important additivity
is certainly not correct. The solution to the simultaneous equations becomes
exceedingly complicated even in lower approximations. However, looking at
the solutions to the two equations separately (assuming a perfectly insulating
wall) we find that in the region where the nonlinear term for the flow in helium
is large the contribution from the flow in the stainless steel is small. There is
therefore probably very little error in using additivity even in this range, for
the stainless steel slit eannot perturb the temperature gradient in the helium
very much.

Computed values of the fountain pressure and the heat flow including the
stainless steel contribution were presented in printed tabular form and also on
punched cards. An automatic point plotter was then used to present the cal-
culations in graphical form for comparison with experiment.

IV. COMPARISON OF EXPERIMENTAL RESULTS WITH CALCULATIONS

Using the results of Sections II and III it is possible to extend beyond the
linear region the comparison of the experimental results obtained in papers I
and IT with theoretical caleulations. The objects of such a comparison are first
to ascertain whether the data are capable of distinguishing between several
theories: then, if so, to determine which theory best fits the data; and finally to
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Fr1c. 1. Comparison of experimental heat flow curves with caleulations based on several
theories using Eq. (15) and (26); d = 3.36 u. a—7 = 1.2°K; b—T% = 1.7°K; ¢—T»s =
2.1°K. Curves a—linear theory (a d2g* = 0); curves b—m = 3, ve = 0, A4 = 50 em-sec
gm; curves c—m = 4, v, = 0, 4 = 50 cm-see/gm; curves d—m = 3, v. = 0, A as given by
Vinen (4); eurves e—m = 3, V. as given by Dash (16), -1 as given by Vinen; ———-experi-
mental curves (1).

seek plausible explanations for those instances where the “best” theory deviates
from the observations.

Examples of the type of theories investigated in ‘the present work and com-
parison with some experimentally determined heat flows are shown in Tig. 1,
where all curves and points refer to Slit I1L" (width = 3.36 u, breadth = 1 em,
and length = 1.9 em). We recall that the experimental curves are obtained by
starting with the cold reservoir in contact with the He bath at some fixed refer-
ence temperature, Ty, and then adding successive increments of power Q to
the thermally isolated reservoir, measuring at each step the equilibrium tem-
perature T, attained by the latter reservoir. A heat flow curve is obtained then
for given T,(Q = 0) as the variation of T with Q. Considering first the results
for Ty = 1.2°K, Fig. la, it is clear that for 75 > 1.7°K the experimental points
deviate markedly from the predictions of the linear theory (curve a) and that
large correction terms are necessary to describe the observed effects. The Gorter-
Mellink foree term (Eq. (15)) has been used in a variety of forms in attempts to
deseribe the departure from linearity. The simplest and often used form takes
m =3, v. = 0, and A4 = 50 em-sec/gm (constant with temperature), although
some experiments (e.g. see (15)) have indicated that a better fit might be ob-
tained by taking m = 4. Curves b and ¢ represent such caleulations: curve b
with m = 3 is seen to be uniformly too high; and curve ¢ with m = 4 is uni-
formly too low. A number of experiments have suggested that .1 might be tem-
perature dependent and possibly velocity dependent. The first precise measure-
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ments yielding values of -4 vs T are those of Vinen (4). The parameter .4 was
found to be a function of temperature and independent of channel size for the
large channels used (smallest dimensions of the order of a millimeter). No veloc-
ity dependence was found. The heat flow measurements indicated that m should
be exactly 3, whereas the effect of v, was found for Vinen’s system to be unim-
portant in the equations. In Fig. la curve d, obtained using Vinen’s values for
A(T), m = 3 and v, = 0, shows quantitative agreement with the experimental
data. Caleulations using (26) and (27) with v, # 0 have been made according
to a model in which v, is determined at each position z along the slit by a local
superfluid critical velocity v, . at the wall. By virtue of the equality of v. — v,
and ¥, — ¥, (Eq. (19)) we have (Vie)wann = ¥« — ¥a = q./pssT. Thus the
same relation between g. and the critical velocity obtains for a critical super-
fluid velocity at the wall as for a situation in which the critical velocity occurs
in ¥, — ¥, . We have performed calulations for a variation in superfluid velocity
with slit width and temperature suggested by Dash (16):v. = 0.09 (p,d/p)"*
em/see when d is given in em. Curve e in Fig. la represents these calculations,
which are seen to lie significantly higher than the experimental results.

Figures 1b and 1c¢ show the same comparisons as discussed above for T, =
1.7°K and 2.1°K respectively. At the former temperature the graph shows again
that curve d best represents the experiments, whereas at 2.1°K none of the theo-
ries appears adequate. Possible reasons for deviations at temperatures near the
A-point will be discussed later.

Another useful way of testing the various models used in the calculations is
to compare their abilities to predict the limiting heat flows at the A-point. Figure
2 illustrates the ratio of calculated to observed asymptotic heat currents for the
various theories for the 3.36 w slit. Here again it is demonstrated that Vinen’s
A(T) with no eritical velocity provides the best agreement, except for 7'y near
T\ . Since each point on each curve is determined by an entire integration it is
not possible to see from this graph alone how agreement might be improved.
However, it may be shown that no single value of A can adequately desceribe the
flow for all values of Ty near the A-point. Equivalently, this means that in this
temperature range 1 depends upon the heat current present, and that -1 must
he considered to become at high temperatures a function of velocity as well as
temperature.

It would be desirable to be able to determine independently and directly
from the experimental data the values A (7") which best fit the measurements
over the entire range. Unfortunately the results of I and II are not well suited
for this purpose, primarily because at the lower temperatures the effect of the
Gorter-Mellink term is not large, (i.e., a '’ < 1, hence @ is not very sensitive
to the precise value of 1) ; and at temperatures near the X point where it is large
1 is likely to be velocity dependent, as discussed above. However, it is possible
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F1G. 2. Ratio of observed asymptotic (7', = 7)) power input to that caleulated on the
basis of several theories as a funetion of 7'y ; d = 3.36 u. Curve a—m = 3, v, = 0, A as
given by Vinen (4); curve b—m = 3, v as given by Dash (16), A as given by Vinen; curve
c—m = 3, v. = 0, A = 50 em-sec/gm; curve d—m = 4, v, = 0, .1 = 50 em-sec/gm.

to determine a few selected values of A in the region 1.7°-2.0°K for large §
where neither of these objections applies. We have not been able to solve the
nonlinear integral equation (26) directly for g, but instead we have used a vari-
ance method pointed out to use by Dr. R. B. Lazarus.

~ We consider

ol A

L TEn" )

9

where 8§ = ad’q’, A = o'/« is a factor relating a (determined from Vinen’s
A(T)) and o' (the new value of « to be determined from the present experi-
ments) ; 7 is a dummy variable. Holding g fixed and varyving X\ we obtain

[ A [oT oAb :l .
= == o (G —_ ——— I - 4'
4 LI:1+)\5<6>\)§ T b (43)
and holding X fixed and varying @
aq ol T2\ (aq> ]
i B QR NN, SR ... S b 4 16
(67‘))\ L [1 A e, G0 F WP \GT A (45

Combining (45) and (46) we find

aT\ _ a (o) _ (1 +N)L "
(sx)a > 7[(@) T ] ks
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dr (44)
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where all the quantities are to be evaluated at 7, . From the experimental data
we compute (87/03)x and solve (47) for (87/dN)g with X set to unity. Since
AT = (8T/dN)gAN, where AT is the temperature difference at (7, §) between
the measured curve and the curve caleulated using « (Vinen), we can determine
AN and hence @’ = (1 + AN)a and new values of 1. Table 1T lists some results
of these eomputations and presents a comparison with values of A as obtained
by several other workers. For Slit IIT" and 7', = 1.800° 1.900°, and 2.000°I%, A
has been given for two values of 7} ; in each case intermediate values of A would
be obtained from heating curves beginning at a temperature between these two
limits of T . It can be seen from Table II that the experiments are rather well
represented by Vinen’s values of 4. Whereas these considerations may not be
useful in any attempt to improve upon Vinen’s A (7'), it is evident from them
that any set of A (7) that is substantially different from those given by Vinen—
e.g., as indicated by Brewer and Edwards (17) or by Kramers et al. (18)—
would not be compatible with the experiments of I and II.

From the arguments presented above and other comparisons with the data
of I and II we have concluded that of the various models we have examined,
caleulations made using Vinen’s A (7), n = 3, and v, = 0 provide the best
overall representation for the experimental data for the 3.36 p and 2.12 p slits.
The general character of the agreement may be observed from an examination
of I'ig. 3 and 4, where families of the heat flow curves for the 3.36 u slit are pre-
sented as observed and as computed, respectively. A more quantitative com-
parison for heat flow is presented in Fig. 5, where [(Qobs — Qeate) /Qob:] X 100

TABLE II

ComparisoN oF VALUEs oF A(T) OraiNep FROM HeaTing CUrrves ror Suit 1117 with
Varves OBraiNep BY Orner WORKERS

A(T1)(cm sec gm™)

oy To(°K)
BKY (This work only) Slit 11T’ Ve[l  Tme il
d=336X10%cm d=04cm, 024cm d~= 0.26cm d = 0.011 cm, 0.37 cm
1.700 1.083 60 (=7)° 75 3 110
1.800 1.083 98 (6) 91 42 140
1.586 97 (1)
1.900 1.083 128 (15) 110 52 185
1.698 117 (5)
2,000 1.083 150 (20) 135 260
1.794 111 (—=14)

* Numbers in parentheses indicate (7,4 — 7'eare) in millidegrees at (7', ,3).

¥ Note added in proof: Tn the Proceedings of the Eighth International Conference on Low
Temperature Physies (London, England, Sept. 16-22, 1962; to be published) Wiarda and
Kramers have reported that new measurements of .1(7") are in complete agreement with
the results of Vinen.
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Fic. 3. Family of experimental heat flow curves (1); d = 3.36 u

is plotted against T, for various reduced values (77 — To)/ (T — T)) of the
heating curves for both slits. (For Figs. 5 and 6 the experimental curves were
graphically interpolated to obtain points at even values of the temperature.)
It is seen that the behavior of the two slits is remarkably parallel and that for
Ty < 1.8°K nowhere is the agreement poorer than 20% . Another way of pre-
senting the comparison is shown in I'ig. 6 where [(Xons — Neate) /Xons) X 100
is plotted against (7', — T4)/(T\ — Ty) for various values of T, ; here X
equals either Q or P;, both for the 3.36 u slit. Generally the fountain pressure
caleulations exhibit deviations from the experimental results closely similar to
those for corresponding heat flow calculations. Although in the regions of 7'y <
1.3°K and low Ty and of 7 > 2.0°K and high 7', the correspondence between
the observed Q and Py is somewhat poorer, the calculated fountain pressures
nevertheless are in quite good agreement with the measurements. We have
already remarked (2) upon the low temperature deviations and indicated that
the cause most probably does not involve turbulence. The high temperature
deviations are discussed in Section V.

The entire discussion thus far has been based on the assumption that the
mutual friction forece Fy,(v. — v,) is responsible for the observed nonlinear
effects and that such forces as F,(v.) and F,(v,), which act on each velocity
field independently and which might be included in the equations of motion (1)
and (2), are negligible. The conclusion which may be drawn from the data repre-
sented in Fig. 6 indicates the validity of this assumption as well as the appli-
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Fi1G. 4. Family of heat flow curves as calculated using Eq. (26); d = 3.36 4, v. = 0, A
as given by Vinen (4). Dashed lines across the heat flow curves indicate several regions
useful in interpreting the vortex line model used for the ecaleulations (see Section V).
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FiG. 5. Pereent deviation of caleulated heat flow with respect to observed heat flow as a
funetion of initial temperature 7', for various values of the reduced temperature parameter
(T, — To)/(Tx — Ty; solid curves: d = 3.36 u; dashed curves: d = 2.12 4.
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F16. 6. Percent deviation of caleulated heat flow and fountain pressure with respect to
the observed quantities as a function of the reduced temperature parameter 7'y — T/
(T'x — Ty) for various values of the initial temperature 7o :d = 3.36 u; solid curves: x =
heat flow, Q; dashed curves: x = fountain pressure, Pr .

cability of Iq. (14), relating ¢ to @, as determined in the experiments under
consideration.

Another way of comparing the character of P¢and that of Q is to examine the
AT (as a function of 7)) at which the experimental points for Peand Q deviate
from the lincar behavior (denoted by AT. = T, — T,). Vigure 7 shows the
results for the 3.36 u slit. For the Py measurements it is quite clear from Iig. |

" of 11 that reliable estimates of AT, may be made by visual inspection of the

curves. The same i true for @ when 74y > 15°K (see Fig. 7 of I); for Ty <
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F1c. 7. Critical temperature difference A7, = T, — Ty and corresponding critical heat
current density g. as a function of initial temperature 7 ; d = 3.36 u. Solid cireles: AT,
as obtained from heat flow measurements; crosses: A7, as obtained from fountain pressure
measurements; curve for . obtained from smoothed A7'. vs. 7'y curve.

1.5°K AT, has been taken as the inflection point in the eurve of Q vs. T, . From
Fig. 7 it is seen that values of AT as obtained from P; and Q observations de-
termine a single smooth curve as a function of 7\ . :

Since it appears that at AT, the character of the flow is modified, we tenta-
tively designate this as the “‘eritical” AT, and calculate the corresponding critical
heat current density g, . The latter is also plotted in Iig. 7 for the 3.36 u slit.
From the smooth curve of @. vs. 7y we may calculate the average velocities of
the two fluids at both the cold end (7) and hot end (7)) of the slit from the
relations (3) and (5). The same analysis has been made for the 2.12 u slit and
the results for both channels are given in Table III. Here the subscript ¢ indi-
cates a eritical velocity and the superseripts 1 and 0 refer to the hot and cold
ends of the slit respectively. A discussion of eritical velocities will be given in
Section V; but it is interesting to point out here that ! . is generally only slightly
ereater than ¥0 ., indicating that if 7., is the appropriate critical velocity, the
conditions of eriticality are achieved along the entire slit length at very nearly a
single value of the superfluid velocity. This uniformity of the superfluid velocity
along the slit provides some additional justification for the type of critical veloc-
ity used in the ealeulations. It is plausible that should eriticality occur at one
point of the slit turbulence would be created which would propagate along the
entire slit, rather than the condition we have considered of local equilibrium at
eueh point. Sinee ¥, varies but slightly along the slit these two approaches are
almost equivalent.

[t may at first secem contradictory to derive a eritical veloeity from the meas-
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urements and at the same time to claim the observations are fitted best by a
theory which does not include the eritical velocity. However, the situation is
not as inconsistent as it may appear. As indicated above, q. has been determined
from the point of first perceptible deviation of the observations from the linear
theory; at this point the calculations involving the Gorter-Mellink term with
v. = 0 lie generally about 5% below the experimental data and the linear theory.
From the manner in which the observed points deviate from the linear theory
it is reasonable to suppose that for @ less than q. the Gorter-Mellink term does
not play a significant role, but that near q. the full mutual friction force begins
to contribute. For wide slits Vinen has observed a similar behavior and has given
a rather detailed discussion of it in relation to the possible existence of “‘sub-
eritical” mutual friction (19).

In principle the procedure just described for deriving critical velocities from
the experimental data ought to be applicable to the computed curves; and it
should be possible thereby to obtain graphically values of the “critical velocity”
even though the thermohydrodynamical equations used in the calculation do
not include critical velocity effects. When we attempt to do this, certain qualita-
tive differences between the calculated and experimental curves emerge rather
clearly : whereas in detail the experimental results permit visual recognition of a
region in which the character of flow is changing, from which one may infer a
critical veloeity, the theoretical curves are substantially smoother and a critical
velocity does not suggest itself so readily. (A comparison of curves a, d and the
dashed line in Fig. la illustrate this point nicely.) This is to say that although
the theory reproduces the major features of the experimental results, it fails to
reproduce the subtleties. Nevertheless, with the aid of reasonable arbitrary cri-
teria we may continue the exercise, the results of which are instructive and per-
haps reflect upon an area in which the experimentalist may readily be led astray.

Our prescription for computing v. from calculated curves in which no v, is
used is as follows: For given values of T, curves computed with and without
inclusion of the Gorter-Mellink term are compared; the heat current corre-
sponding to some arbitrarily chosen deviation of the curves from each other,
say 5%, is defined as the “eritical heat current”; from this a “critical veloecity™
may be calculated. Using this preseription results are found in remarkably good
agreement with the critical velocities determined from the experimental curves
for temperatures below about 1.8°IX. However, above 1.8°IX the “critical veloc-
ity”” obtained in this manner falls toward zero, in contrast to the observed values,
thereby pointing up the inadequacy of our preseription. Yet the existence of this
spurious “critical velocity” eriterion may serve as a warning to the experi-
mentalist that care must be exercized in interpreting changes in the character
of the solutions of the flow equations in relation to changes in experimentally
measured quantities. In passing we note that the criterion used above essentially
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requires the term « dg” oceurring in (26) to be of the order of a few percent and
that this eriterion was in fact suggested earlier by London (20a). This require-
ment implies that ved is a function of temperature alone. Such a variation of v,
with slit size has been found to agree with some experiments; but this condition
also has only a limited range of applicability and must be considered spurious
oo

V. DISCUSSION

In the preceding section we have demonstrated the rather remarkable result
that a phenomenological model of the thermohydrodynamic behavior for liquid
{le [T containing no adjustable parameters fits exceedingly well the experimental
data obtained for bulk liquid as well as for liquid confined to very narrow chan-
nels, over a wide temperature range and for extreme temperature differences.
It is significant that to achieve this result it has not been necessary to resort to
any detailed, microscopic picture concerning the nature of turbulence in liquid
Ile II. On the other hand we have noted several regions where nontrivial, sys-
tematic deviations occur between the measurements and the predictions of the
theory. It is believed that at least some of these deviations have their origin in
elfects associated with the narrowness of the channel widths, and that considera-
tion of a microscopic model is at this point required for a better understanding
of the situation. In particular, some of the ideas derived from the Onsager-
Feynman quantized vortex-line model appear to be pertinent and may be applied
to the present results.

On the assumption that the degeneration of superfluidity in liquid He II
comes about from the creation of vortex motion in the superfluid, Vinen has
interpreted the mutual friction force in terms of the properties of elementary,
quantized vortices. According to Vinen’s (21) description the Gorter-Mellink
coefficient A (7') effectively describes the interactions between the vortex lines,
moving with the superfluid, and the thermal excitations comprising the normal
fluid. A (7") is calculable from the kinetic model subject to several assumptions
and restrictions, among which are two that are of importance when narrow
slits are considered: (1) the turbulence is assumed to be homogeneous, requiring
that the average distance [ between vortex lines is small compared to the smallest
dimensions of the slit; and (2) the effective viscous penetration depth, 1/A =
200 pu (¥ — ¥.), should be small compared to the slit dimensions.

The effect of these restrictions when applied to the calculations for the 3.36 u
slit is indicated in I'ig. 4. Values of line spacing in turbulent flow / have been
obtained according to Vinen’s method from his graph of (v, — ¥,| vs. T (Fig.
L of ref. 21). It is seen that the viscous penetration depth equals the slit width
at smaller relative velocities than does the average vortex line spacing, so that
the restriction on the line spacing is the more stringent. Since ! decreases as q
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increases A (7') determined from bulk liquid measurements may not be appro-
priate to the small slits for any Ty at low power inputs. For 7' less than about
1.8°K this is of little consequence since in that region the experimental data indi-
cate that the contribution of the Gorter-Mellink term is negligibly small when /
is large, and becomes appreciable only when I < d; however, for Ty near the A
point this term is important even for low power inputs. Hence, according to
Vinen’s theory, for the simultaneous conditions of 7% near 7 and low  we should
expeet to find poor agreement between theory and experiment, which is indeed
the case. Figure 4 also indicates the region in which the Gorter-Mellink term
becomes comparable to the linear term. Hence for the larger heat flows the for-
mer term dominates and the selection of the proper values of A (7) becomes
more important in order to achieve a good fit in this region.

It should be pointed out that near the X point the vortex-line model as pres-
ently developed certainly provides an inadequate description for the very com-
plicated situation of flowing liquid He II; hence the above considerations, al-
though consistent with the theory, probably do not describe the sole mechanism
for deviations near the X point. In section IV we have already mentioned another
possible source of deviations, namely, the velocity dependence of the mutual
friction force. There are undoubtedly others. Furthermore, the above argument
rests upon Vinen’s assumption that the degree of turbulence in the fluid is
measured by the velocity at a vortex line due to the velocity field of a neighboring
line which in turn is assumed to be proportional to the average relative velocity
of the two fluids. The validity of this treatment is open to question.

Whereas it is rather reassuring that the results presented here are deseribed
so well by the vortex-line theory, it is to be noted that application of this model
to the smaller slits (d < 107 em) involves certain additional difficulties, some
aspects of which are discussed in the following:

The values of the phenomenological parameter A (7') as given by Vinen are
by no means generally found by other workers, even for channels with d > 10~
cm. This situation is well summarized by IKramers (22), to which may be added
data given recently by Brewer and Edwards (17). Ford > 107° em values of A (7))
from these other sources show the same temperature dependence as those of
Vinen, but differ in magnitude by as much as a factor of =2 or 3 (see Table IT):
for d < 107 em some results show the reverse temperature dependence. As al-
ready indicated A (7) is considered to be descriptive for isotropic turbulence
and independent of channel size, except perhaps for “small” channels. Such re-
strictions being rather vague when applied in practice to a given experimental
arrangement, it is not always clear that the experiments are compatible with
the assumptions of the theory. With regard to the results of I and II and the
present work considerable effort has been made to ascertain whether the theo-
retical assumptions are satisfied. From the discussion in Section IT of this paper
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and the foregoing remarks about vortex line spacing it appears probable that
the conditions are properly met, although the possibility cannot be completely
exeluded that our agreement with Vinen’s findings is partially fortuitous. Iur-
ther, the possible inadequacy of the theory must be added to the list of uncer-
tainties by taking note of the serious objections to the vortex-line model raised
by Lin (23) as well as of the conclusion by Townsend (24) that a satisfactory
deseription of turbulence in thermal flow of liquid He II is not yet available.
Finally, no adequate accounting for wall-effects has been given.

Whereas there still remains considerable divergences in the various experi-
mental measurements concerning the nature of turbulence once it is developed
in the flow of liquid He II, there appears to be rather more agreement with
respect to determining the point at which turbulence begins. This is not to say
that the onset of turbulence at some eritical velocity is well understood, nor that
such onset is experimentally clear-cut. But it is possible to correlate the critical
superfluid velocities obtained from a variety of ditferent types of experiments
over a range of eight decades of the characteristic geometric distance, d, asso-
ciated with the apparatuses used. One such correlation has been given by Atkins
(25) for T = 1.4°KK. It can be shown that values of V.. at this temperature ob-
tained from the present work, shown in Table III, are in good accord with the
results of other investigators as represented by Atkins’ graph.

On the other hand general agreement is not found experimentally for the man-
ner in which ¥, . depends on temperature for a given geometry. Although sev-
eral investigations, e.g. those of Staas et al. (’6‘) and of Winkel et al. (27),
indicate that for 4 X 1077 em < d < 2.6 X 107 e¢m ¥, . passes through a maxi-
mum somewhere between 1.5°K and the X\ point, the preponderance of evidence
suggests that for this range of d, ¥, . increases with rising temperature. The lat-
ter behavior is demonstrated by the measurements from Slits I and III" listed
in Table III. Because of the conflicting experimental results noted above, it is
not clear whether v, . becomes large or approaches zero at the A-point. In this
matter, however, some observations made with the smallest channel, Slit II
(d = 0.28 u), may be helpful. As noted in the earlier papers (I and II) no dis-
sipation effects were evident from the experiments with Slit II, even at very
large temperature differences; hence it has not been possible to determine critical
velocities for this size channel. However the lowering of the A-point observed
in the fountain pressure measurements appeared to indicate a premature (with
respect to temperature) destruction of superfluidity which may be associated
with large superfluid velocities near the A-point. To explain the experimental
results an argument consistent with these ideas as well as with those of the vortex
model may be constructed as follows: Near 7, the superfluid fraction becomes
relatively small and in order that heat currents of the order of 0.3 watts/cm®
(as ealeulated) be maintained the superfluid must flow rather rapidly (>5 em,
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TABLE III
VaLtes oF Critican HEar CURRENT DENSITY Q. AND CoRREsPONDING FLUuID VELOCITIES"

= =0 =0 1 =1
Qo (watt Va.e Vs.e Ve A\

To(°K) Ti(°K) cm™?) (cmsec™) (cmsec™) (cm sec™!) (cm sec’!)

Slit I11"

d= 336p
1.200 1.590 0.96 105 2.9 14.9 2.8
1.400 1.621 1.15 41.5 3.4 15.7 3.4
1.600 1.711 1.58 23.5 4.7 15.2 4.9
1.800 1.847 2.15 15.0 6.8 12.8 7.2
2.000 2.014 1.53 5.4 7.4 5.3 8.3
2.100 2.106 0.84 2.2 6.6 2.1 6.8

Slit I

=2124

1.400 1.787 2.30 83 6.7 16.8 Tid
1.600 1.794 2.02 30 6.0 14.3 6.4
1.800 1.871 1.61 11.3 5.1 8.9 5.7
2.000 2.037 1.93 6.9 9.5 6.1 10.9
2.100 2.122 1.54 4.0 12.0 3.7 15.3

= The velocities given here are the absolute values averaged over the cross section of the
slit assuming laminar flow. The maximum velocity in the channel is then given as 33 times
the average velocity. The average relative velocity ¥.. may be given by V¢ + V..
The superseripts 0 and 1 refer to velocities obtained at 7'q and 7', , respectively.

sec). Vortices formed as a result of the flow are associated with the superfluid
and are essentially removed from participation in superflow. This effective de-
pletion of the superfluid fraction causes the remaining superfluid to flow more
rapidly, thereby creating more vortices. The result is a sort of runaway process
which ends in the “self-destruction” of superfluidity through complete conver-
sion to vortex states. I'rom this we would conclude that in small slits the eritical
velocity does not approach zero at 7'\ but remains finite and that ¥, increases
until the superfluid state is suddenly destroyed by the vortex catastrophe. It
is not clear at this time whether the same argument may be applied to the results
of Atkins et al. (28) and Seki and Dickson (29) who have observed the onset of
superfluidity in isothermal flow through channels with d < 10™ em to be at
temperatures considerably below 7' .

VI. CONCLUSION

Although a number of thermohydrodynamical sets of equations have been
applied to the flow of liquid He I, no single set has yet been constructed which
completely describes the observed behavior of this quantum liquid. The two-
fluid equations including the Gorter-Mellink mutual friction term as interpreted
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AND CorresPONDING FLUIp VELOCITIES®
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Yn.e Vs.e Vu.e Vs.e

sec™?) (cm sec!) (cmsec™) (cm sec”‘)i

|

5 2.9 14.9 2.8
1.5 3.4 15.7 3.4
23.5 4.7 15.2 4.9
15.0 6.8 12.8 7.2
5.4 7.4 5.3 8.3
2.2 6.6 2.1 6.8
83 6.7 16.8 7.3
30 6.0 14.3 6.4
11.3 5.1 8.9 5.7
6.9 9.5 6.1 10.9
2.0 3.7 15.3
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on the basis of the vortex line model has been shown by others to represent
rather well most of the experimental observations. In the present paper these
cquations have been applied to the flow of He II through narrow slits and have
been tested over a range of temperature and pressure gradients substantially
larger than has been studied hitherto. IFurthermore, a detailed study has been
made of the approximations made in arriving at solutions of the equations of
motion as well as of the limitations implied by the vortex line model for super-
fluid turbulence. Within this framework the agreement found between theory
and experiment is generally quite good. In addition the Gorter-Mellink mutual
friction coefficient as determined by Vinen for large channels and small tem-
perature gradients has been found to be equally appropriate for narrow channels
and large temperature gradients in those regions where the vortex line model
indicates it should be valid, and not elsewhere. It would thus appear that the
equations used here are applicable over an exceptionally wide range and are
capable of describing a broad spectrum of flow phenomena of superfluid helium.
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